Processing math: 100%
Subalgebra G12D14
15 out of 23
Computations done by the calculator project.

Subalgebra type: G12 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A31 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: D14

Elements Cartan subalgebra scaled to act by two by components: G12: (2, 3, 2, 2): 6, (-1, -1, -1, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: g8+g9+g10, g11
Positive simple generators: g10+g9+g8, g11
Cartan symmetric matrix: (2/3112)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6332)
Decomposition of ambient Lie algebra: Vω22Vω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 3) ; the vectors are over the primal subalgebra.g7+g5g6+g5g2
weightω1ω1ω2
Isotypic module decomposition over primal subalgebra (total 2 isotypic components).
Isotypical components + highest weightVω1 → (1, 0)Vω2 → (0, 1)
Module label W1W2
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g7+g5
g1+g4
g10g8
h4+h1
2g82g10
2g42g1
2g52g7
g6+g5
g1+g3
g10g9
h3+h1
2g92g10
2g32g1
2g52g6
Semisimple subalgebra component.
g2
g12
g7g6+g5
2g1+2g3+2g4
6g11
2g102g92g8
6h4+6h3+6h2+6h1
4h4+4h3+6h2+4h1
6g8+6g9+6g10
12g11
6g4+6g3+6g1
12g5+12g6+12g7
36g12
36g2
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as aboveω1
ω1+ω2
2ω1ω2
0
2ω1+ω2
ω1ω2
ω1
ω2
3ω1ω2
ω1
ω1+ω2
3ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
3ω12ω2
ω1ω2
ω1
3ω1+ω2
ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerω1
ω1+ω2
2ω1ω2
0
2ω1+ω2
ω1ω2
ω1
ω2
3ω1ω2
ω1
ω1+ω2
3ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
3ω12ω2
ω1ω2
ω1
3ω1+ω2
ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.Mω1M2ω1ω2Mω1+ω2M0Mω1ω2M2ω1+ω2Mω1M3ω1ω2Mω2Mω1M2ω1ω2M3ω12ω2Mω1+ω22M0Mω1ω2M3ω1+2ω2M2ω1+ω2Mω1Mω2M3ω1+ω2
Isotypic character2Mω12M2ω1ω22Mω1+ω22M02Mω1ω22M2ω1+ω22Mω1M3ω1ω2Mω2Mω1M2ω1ω2M3ω12ω2Mω1+ω22M0Mω1ω2M3ω1+2ω2M2ω1+ω2Mω1Mω2M3ω1+ω2

Semisimple subalgebra: W_{2}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (266.67, 400.00)
1: (0.00, 1.00): (300.00, 500.00)




Made total 545 arithmetic operations while solving the Serre relations polynomial system.